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Abstract

Several overlapping cDNA clones corresponding to the entire coding sequence of the mouse «1(V) collagen gene
(Col5al1) were isolated. The conceptual amino acid trandation indicated a high degree of sequence identity (94%) with the
human «1(V) chain. All of the important structures previously noted in the human «1(V) chain were aso conserved in the
mouse chain. The a1(V) transcripts were easily detected in mouse embryos as early as 11 days post coitum (d.p.c.). The
transcripts were widely distributed in non-cartilaginous and cartilaginous tissues. Finally, we calculated the ratio of
transcripts of a1(V):a2(V):a1(X1) in the calvaria and tongue of 18 d.p.c. embryos using the competitive reverse
transcription-polymerase chain reaction (RT-PCR) technique. The results raised the possibility that there are at least two
different kind of types V /XI collagen heterotrimers in mouse embryonic tissues. © 1998 Elsevier Science B.V.
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1. Introduction

During vertebrate embryogenesis, a number of
unique extracellular molecules are synthesized and
assembled. Among them, the fibrillar collagen net-
works are widely distributed in the extracellur matrix

Abbreviations: d.p.c., days post coitum; bp, base pair(s); kb,
kilobasa(s); nt, nucleotide(s); SSC, 0.15 M NaCl, 0.015 M sodium
citrate (pH 6.8); RT-PCR, reverse transcription-polymerase chain
reaction; AGPC, acid guanidium thiocyanate phenol chloroform,;
MMLYV, moloney murine leukemia virus, COL, collagenous;
GAPDH, glyceradehyde 3-phosphate dehydrogenase
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and play critical roles in embryogenesis. Mutations of
fibrillar collagen genes cause connective tissue disor-
ders affecting bone, cartilage, skin, ligaments and
aorta in man. For instance, Osteogenesis Imperfecta
(Ol) and Ehlers-Danlos syndrome type VII (EDS
VIl) are caused by defects of type | collagen; some
kinds of chondrodysplasia such as spondyloepiphy-
seal dysplasia congenital and Stickler syndrome are
caused by abnormal type Il collagen; and EDS-IV is
caused by COL3A1 mutations [1,2]. In addition, mu-
tations in the COL5A1 gene have been found in cases
of EDS-I and Il, and those of in the COL11Al and
COL11A2 genesin Stickler syndrome [3-5]. Interest-
ingly, Stickler patient with «1(X1) defect has vitre-
ous changes, but in defect of «2(XI) the vitreous is
normal, which is due to tissue specific expression of
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the two collagen chains. Similar tissue-specific ab-
normalities have been observed in mice with natural
or artificially generated fibrillar collagen mutations.
To cite a few, absence of a1(l) collagen chain leads
to embryonic death around 14 days post coitum
(d.p.c.) due to the rapture of aorta [6]; absence of
a1(X1) collagen chain results in the autosomal reces-
sive chondrodysplasia(cho) [7]; and structural defects
in a1(11) and «2(V) cause morphogenetic abnormal-
ities in cartilaginous and non-cartilaginous tissues,
respectively [8,9].

Types V and XI collagen are quantitatively minor
components of the collagen networks which regulate
the diameter of type | and Il collagen fibrils [10,11].
Type V collagen was initially described in two differ-
ent chain organizations, namely [a1(V)], @ 2(V) and
alV)a2(V)a3(V) [12,13]. The former is distributed
in many connective tissues, while the latter is only
seen in placental tissues. In addition, a homotrimer
comprised of a1(V) chains was also identified in
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cultured Chinese hamster lung cells, chick embryo
crop and blood vessels [14—16]. For along time, type
V and type X| were considered to be distinct colla-
gens because their expression was thought to be
mutually exclusive [12,13]. More recently, however,
the presence of «a1(XI) transcripts was reported in
non-cartilaginous tissues where type V collagen is
also expressed [17,18]. Additionaly, it was also re-
ported that one a2(V) chain and two a1(XI) chains
form heterotrimers in human A204 rhabdomyosar-
coma and bovine vitreous and a1(V), a2(V) and
al1(X1) chainsin a 1:1:1 ratio present in bovine bone
tissues [19—-21]. Current evidence thus suggests that
different combinations of types V and XI subunits
may lead to the formation of distinct trimers which
plausibly confer different physiological properties to
various matrices.

This study was designed to provide additional
structural information about type V collagen and
types V /XI| heterotrimers. To this end, we cloned the
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Fig. 1. The domain structure of the mouse «1(V) collagen chain deduced from nucleotide sequence of the cDNA clones and their partial
restriction map. Numbers of the amino acid residues in individual domains are shown in parentheses. The striped, closed and open boxes
indicate the signal peptide (SP), central continuous collagenous domain (COL), and noncollagenous domain (NC), respectively. The NC 1
domain contains C propeptide (CP) and C telopeptide (CT), and the NC 2 domain contains proline arginine rich protein (PARP), acidic
domain (AD), short collagenous segment (SC) and N telopeptide (NT). The putative C-proteinase cleavage site is indicated by a closed

triangle.
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mouse a1(V) collagen cDNA in its entity and exam-
ined the expression of the gene during the develop-
ment of this organism. Aside from confirming the
high degree of sequence conservation in collagens
from different species, the results suggest the exis-
tence of more of one kind of types V /XI hetero-
trimers in the embryonic tissues of the developing
mouse.

2. Materials and methods
2.1. Isolation and characterization of cDNA clones

Two mouse embryonic cDNA libraries were used
for the a1(V) isolation of cDNAS; one was pur-
chased from Clontech Lab. (ML1029b), and the other
was generated from mRNA isolated from 18 d.p.c.
mouse whole embryo [22]. The libraries were initially
screened with human pro-a1(XIl) collagen cDNA
[23] and mouse «1(V) collagen genomic probe
(Yoshioka, unpublished data) at low and high strin-
gent condition of hybridization and washing, respec-
tively [22]. Subsequent screenings were performed to
isolate clones overlapping the first ones according to
the standard protocol [24]. The reverse transcription-
polymerase chain reaction (RT-PCR) technique was
used on adult lung RNA to isolate an intervening 1.9
kb cDNA not found in the above cDNAs. For this
purpose, we used three sets of primers from mouse
and human sequences (Fig. 2). Primer 1F 5-
AGCACCACTGTTACCTCCAA-3 (mouse) (nt
number 1260-1279 from the beginning of the se-
quence). Primer 1R: 5-AACCTGGCCTGCTG-
GAGAAT-3 (human) (corresponding nt number to
mouse 1795-1776; The underlined nuclectides are
different from ones from the mouse sequence. Primer

2F. 5-CAGGTACCATGCTCATGCTG-3 (mouse)
(nt number 1678-1697). Primer 2R: 5-CAGGAAAT-
CCAGGGAATCCA-3 (human) (nt number 2805-
2786). Primer 3F: 5-AGGAAGACAAGGACCAAA-
GG-3 (human) (nt number 2759-2778). Primer 3R:
5-AGGAAGTCCTTTCTCTCCAG-3 (mouse) (nt
number 3497-3478).

2.2. Northern blotting analysis

Total RNA was isolated from mouse tissues using
acid guanidium thiocyanate phenol chloroform
(AGPC) extraction method [25]. Samples were pre-
pared from whole embryos and from different tissues
from 18 d.p.c. mouse embryos. Poly(A)"RNA was
purified by elusion through oligo (dT)-cellulose type
7 (Pharmacia Biotech) [24]. Approximately 20 ug of
RNA or 05 wg of poly(A)*RNA were elec-
torophoresed on 0.8% agarose gel under denaturing
conditions, blotted onto Hybond N nylon filter
(Amersham), and hybridized with a probe under stan-
dard conditions [24]. A cDNA for glyceraldehyde
3-phosphate dehydrogenase (GAPDH) was used as
interna control for Northern blotting.

2.3. RT-PCR analysis

RNA samples were prepared from 11, 12 and 14
d.p.c. mouse whole embryos, and from different tis-
sues of 16 and 18 d.p.c. mouse embryos. Twenty
microliter of reverse transcription reaction mixture
[50 mM Tris=HCI (pH 8.3), 75 mM KCI, 3 mM
MgCl,, 10 mM DTT] containing 2 ug tota RNA,
0.25 mM dNTP, 2 unit of RNasin (Toyobo, Osaka,
Japan), 400 ng random hexamer, and 10 units of
moloney murine leukemia virus (MMLV) reverse
transcriptase (Gibco BRL) was incubated at 37°C for

Fig. 2. Nucleotide sequence (top) and deduced amino acid sequence (middle) of the mouse «1(V) collagen. The amino acid sequence of
the human (bottom) has been aligned with that of the mouse. Only the residues of the human that differ from the mouse are shown. The
asterisks indicate the missing nucleotides and the corresponding amino acids in the mouse, the missing amino acids in the human and the
stop codon. The boundaries of the central triple-helical domain are indicated by solid vertical bars, whereas those between PARP and AD
domain are indicated by dotted vertical lines. Conserved cysteine residues and potential lysine-mediated cross-linking sites, asparagine-
linked glycosylation sites and RGD (Arg—Gly—Asp) are indicated by open squares, closed small squares, solid bars, and open bars,
respectively. The nucleotide and amino acid differences with the report of Mattei et al. [33] are indicated with the dots above the
nucleotides and thin bars under the amino acids, respectively. The horizontal arrows show the positions of the primers 1F, 1R, 2F, 2R, 3F
and 3R were used for generating cDNA clones, and primer 4F and 4R for RT-PCR analysis. The arrows with solid lines indicate the
mouse sequences, and the arrows with dashed lines the human seguence.
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1 h, heated to 70°C for 10 min, quick-chilled on ice,
and diluted with 80 ul of water. PCR amplifications
were performed for 35 cycles using 0.8 units of Tth
DNA polymerase (Toyobo) at 94°C for 1 min, 60°C
for 2 min, and at 70°C for 3 min, followed by final
extension at 70°C for 7 min [26]. Amplified products
were electrophoresed in 1.5% agarose gel and stained
with ethidium bromide. The nucleotide sequences of
the primers for a1(V) used in these reactions are:
(forward) 5-GGAGAGCTACGTGGATTATG-3 (nt
number 4925-4944 from the beginning of the se-
quence), (reverse) 5-GGGCCAAGAAGTGAT-
TCTGG-3 (nt number 5219-5200). The 8 actin se-
guence was used as described before [18].

For competitive PCR, the cDNASs were generated
with same the method as mentioned above. The
competitors for a1(V), a2(V) and «1(XI) collagen
cDNA were constructed with PCR-based overlap ex-
tension method reported by Ho et a. [27]. The com-
petitors for B actin was described elsewhere [22].
The nucleotide sequences of the primers for a1(V),
a2(V) [28] and a1(XI) [29] competitor cDNAS used
in these reaction are as follows: (i) a1(V)—externa
primers. This primers set is the same as the one that
was used in RT-PCR; internal primers: (forward)
5-TGCAAGGATCTACAGGACTCCTTCAAAGTC-
3, (reverse) 5-GACTTTGAAGGAGTCCTGTA-
GATCCTTGCA-3, (ii) a2(V)—external primers:
(forward) 5-CCTGAAGTCTCTCAGTAGTC-3, (re-
verse) 5-CACACAGGCTTATTGTCAGG-3; inter-
nal primers: (forward) 5-GTTCCAAGAAACACC-
CTGAAGATGCAATCA-3, (reverse) 5-TGATTG-
CATCTTCAGGGTGTTTCTTGGAAC-3, (iii)
al(Xl)—externa primers. (forward) 5-AAAGAC-
CAGAAGACACACTG-3, (reverse) 5-CGGATA-
GATGCATGTCTCAC-3; interna primers. (for-
ward) 5-GTTCCCTCAATTCTCAGAC-
CTGCAACTCAG-3, (reverse) 5-CTGAGTTGCAG-
GTCTGAGAATTGAGGGAAC-3.

These competitors were 63, 84 and 67 bp shorter
than the original inserts, respectively. To determine
the optimal condition, a series of RT-PCR reactions
containing twofold serial dilutions of competitors
(ranging from 1 pgto 1 fg/ml for a1(V), a«2(V) and
al1(X1), and from 50 pg to 1.6 pg/ml for B actin)
were first carried out [30]. PCR was performed under
the condition described above except additiona 5
more cycles in each reaction. For quantitative analy-

sis, aiquots of each PCR reaction were elec-
trophoresed on 2.5% agarose gels (Sigma) containing
05 wg/ml ethidium bromide. Gels were photo-
graphed with Polaroid film (Polaroid type 667), then
the photographs were scanned for determining the
guantity using the NIH-image software.

3. Results and discussion

A mouse embryonic cDNA library was initialy
screened with a human «1(XI) collagen cDNA [24]
and a mouse «al1(V) collagen genomic probe
(Yoshioka, unpublished data) at high and low strin-
gency condition. Two positive clones were isolated.
One clone, mHY 10, covered most of the carboxy-
propeptide and a carboxy portion of the COL domain
of «1(V) collagen; the other, mHY 217, encom-
passed the 5 untrandlated region and most of the
amino globular region of «1(V) collagen. Subse-
guent screening with these clones led to the isolation
of several overlapping cDNAs which cover al but
1.9 kb of the a1(V) coding sequence. To isolate the
missing 1.9 kb, the RT-PCR technique was applied to
amplify adult lung RNA. As a result, three clones,
mYW 7, mYW 30 and mYW 28, were isolated. The
composite map of the cDNAs coding for the entire
mouse Col5al mRNA is shown in Fig. 1.

The deduced amino acid sequence of the mouse
al1(V) collagen chain shows 94% identity to the
human counterpart (Fig. 2) [31,32]. The level of
identity in the amino globular peptide region (85%)
was less than in the triple-helix region (98%) and in
the carboxy propeptide region (99%). In particular,
the difference was more pronounced in the acidic
domain of the amino globular peptide (~ 72% iden-
tity). The predicted polypeptide contained 1801 amino
acid residues with a 37-residues signal peptide; this
estimate is exactly the same as the one of the human
counterpart (Fig. 2). All of the potentially important
structural-functional features previously noted in the
human a1(V) chain were also conserved in the mouse
polypeptide. They include inter- and intrachain cys-
teinyl disulfide bonds in the amino- and carboxy-
terminal domains, potentia lysine-mediated cross-lin-
king sites, a potentia asparagine-linked glycosylation
sites, and RGD sequence (Fig. 2). Mattel et al. [33]
have recently reported a short nucleotide sequence of
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Fig. 3. Northern blot analysis of a1(V) collagen mRNA in the mouse embryo. (A) Poly(A)*RNA (0.5 ng) from 18 d.p.c. mouse embryo
was hybridized to 1.0-kb cDNA probe, encoding a carboxy-terminal half of the C-propeptide and 3' untranslated region. The estimated
size of the transcripts are 7.7 and 6.3 kb. (B) Total RNA (20 ng) from limbs (lane 1), vertebrae (Iane 2), heart (lane 3), brain (lane 4),
liver (Iane 5), intestine (Iane 6) tongue (lane 7), tail (lane 8), skin (lane 9), calvaria (lane 10) lung (lane 11) and kidney (lane 12) of 18
d.p.c. mouse embryos were hybridized to the same probe of «1(V) chain (upper panel) and GAPDH (lower panel).

(A) a1(V) (©) o 1(XD)
1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 ¢

Fig. 4. Agarose gel analysis of competitive PCR products. The gel shown here contains RT-PCR products of one representative
experiment using RNA from the tongue of 18 d.p.c. mouse embryo as templates. The panels A, B, C and D show the cDNA product of
al(V), a2(V), al(X1) chain and B actin. On each gel, the lanes from the left to the right contain amplified DNA synthesized from a
constant amount of tissue cDNA and decreasing amounts of competitor DNAs. The DNA competitor in the reaction mix was as follows:
() [«2(V) and a2(V) chain competitor]—lane 1: 200 fg, lane 2: 100 fg, lane 3: 50 fg, lane 4: 25 fg, lane 5: 12.5 fg, lane 6: 6.3 fg; (ii)
[ «1(X1) chain competitor]—lane 1: 500 fg, lane 2: 250 fg, lane 3: 125 fg, lane 4: 62.5 fg, lane 5: 31.5 fg, lane 6: 15.8 fg, (iii) ( B actin
competitor)—lane 1: 20 pg, lane 2: 10 pg, lane 3: 5 pg, lane 4: 2.5 pg, lane 5: 1.25 pg, lane 6: 0.625 pg.
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Fig. 5. Graphic analysis of densitometric scanning data cal culated
with the aid of a computer program. The y axis represents the
amount of competitor DNA, while x axis the ratio of competitor
PCR product to endogenous product. The panels A, B, C and D
show the data from RT-PCR reactions using specific primers for
al(V), a2(V), a1(XI) collagen and B actin.

the mouse «1(V) chain covering a portion of the
amino propeptide. There are 15 nucleotide differ-
ences between that sequence and ours which result in
seven amino acid substitutions. Since such high num-
ber of mutations cannot be simply discounted as
polymorphisms, we isolated and sequenced additional
cDNA clones covering this region. The results con-
firmed the sequence shown in Fig. 2 and thus,
amended the errors in the report of Mattel et a. [33].

To establish the developmenta pattern of Col5al
gene expression, we performed RT-PCR and North-
ern blot analyses. Col5al transcripts were readily
detectable by RT-PCR anaysisin embryos at 11, 12,
and 14 d.p.c. as well asin different tissues of 16 and

18 d.p.c. mouse embryos. The positive tissues include
limbs, vertebrae, heart, brain, liver, intestine, tongue,
tail, skin, calvaria, lung, and kidney (data not shown).
As shown in Fig. 3A, Norther n blotting analysis with
poly (A)*RNA from 18 d.p.c. whole embryo re-
vealed two magjor transcripts (7.7 and 6.3 kb in size)
which probably reflect the aternative use of different
polyadenylation sites. A subsequent Northern blotting
analysis aso identified a1(V) transcripts in all the
tissues of 18 d.p.c. embryos that we surveyed (Fig.
3B).

Recent biochemical work has documented the
presence of heterotypic collagen molecules consisting
of al(Xl) and «2(V) chains in a human rhab-
domyosarcoma cell line (A204) and the bovine vitre-
ous [19,20]. Niyibizi and Eyre [21] have suggested
that «1(V) chain is involved in forming heterotypic
V /X1 molecules in bovine bone. Using RNase pro-
tection assay, Lui et a. [34] have raised the possibil-
ity of homotrimeric, heterotrimeric, and heterotypic
molecules of V /XI collagen in non-chondrogenic
tissues of human embryo. This result suggested func-
tional differences of various V /XI molecules that are
present temporarily and spacioudly in different em-
bryonic tissues. To examine this last possibility in the
mouse embryo, we calculated the ratios of «1(V),
a2(V) and a1(XI1) using competitive RT-PCR tech-
nique. To this end, we examined the calvaria and
tongue of 18 d.p.c. mouse embryos, where a1(V)
chain is expected to be synthesized by osteoblasts
and skeletal muscle cells. Fig. 4 shows an ethidium
bromide-stained agarose gel pattern of a representa
tive experiment using tongue RNA. The intensity of
bands was calculated by densitometric analysis and
with the aid of a computer. A graphic representation
of these analyses is shown in Fig. 5. The estimated

Table 1
(a) Mean ratios of a1(V), a2(V) and a1(XI) collagen to B actin mRNA (X 1072)

al(V)/B a2V)/B al(X)/B
Cavaria 36+0.2 84+0.2 79+04
Tongue 13+02 74+12 12+02

Vaues are means + S.D. n= 4 for calvarian, 3 for tongue ( p < 0.05)

(b) Mean ratios of a2(V) and a1(XI) to «1(V) collagen mRNA

al(V) a2V)/al(V) a1(X1) /a1(V)
Calvaria 1 23+ 01 22401
Tongue 1 55+ 03 0.9+0.2
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amounts for the «1(V), a«2(V) and «1(XI) collagen
MRNAS, and were 68, 404, 51 fg, and for the 8 actin
4630 fg. The relative ratios of a1(V), a2(V) and
al(Xl) collagen mRNA to B actin mRNA were
therefore 1.5 1072, 87X 1072, and 1.1 X 1072,
respectively. Mean vaues of the relative amount of
the three chains from several experiments were 3.6 X
1072, 8.4 %1072 and 7.9 X 102 in calvaria, 1.3 X
1072, 7.4x 10" 2 and 1.2 X 10~ 2 in tongue (Table
1a), respectively. Compared to the a1(V) collagen,
the a2(V) mRNA was 2.3 greater in calvariaand 5.5
times higher in tongue. By contrast, the a1(XI)
MRNA was 2.2 times greater in calvaria and amost
the same in the tongue (Table 1b). Assuming no
translational differences, the resultsimply that «2(V)
collagen may participate in forming more than one
kind of trimer in these tissues. In accordance to the
suggestion of Lui et al. [34], we propose that different
kind of types of V /XI collagens heterotrimers may
be present in these tissues.

Several independent investigations support the idea
that the structure and the function of «1(V) and
a1(X1) chain are closely related to each other. The
overall identity between the mouse o 1(V) and a1(XI)
chain is approximately 73% at the amino acid level
[29]. However, the identity at the acidic domains of
amino-propeptide is only 24%. We and others have
reported that complex RNA splicing occur at the
acidic domainsof a1(XI) and « 2(XI) collagen chains
in different species [29,35-38]. These aternative
splicing events may have some biological relevance
in cell differentiation during bone formation [29]. We
have examined whether aternative splicing occurs in
the region coding for the acidic domain of «a1(V)
collagen. However, analysis of several tissues of 18
d.p.c. mouse did not detect preferential expression of
alternative ar1(V) transcripts (data not shown).

In conclusion, this study represents the second
report of the full structure of a vertebrate a1(V)
collagen chain. It also confirms that «1(V) collagen
gene is widely expressed at al embryonic tissues.
Finally, it suggests the possible heterogeneity of types
V /XI heterotrimers. This in turn expands the func-
tiona diversity of fibrillar collagen networks during
morphogenesis and development.

The nucleotide sequence reported in this paper has
been submitted to the DDBJ/EMBL /GenBank un-
der accession number AB009993.
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