ORIGINAL ARTICLE

Disruption of asparagine-linked glycosylation to rescue and alter gating of the $Na_v 1.5$ - Na^+ channel

Pu Wang^{1,2} · Xiufang Zhu^{1,2} · Mengyan Wei^{1,2} · Yangong Liu^{1,2} · Kenshi Yoshimura² · Mingqi Zheng¹ · Gang Liu¹ · Shinichiro Kume² · Tatsuki Kurokawa² · Katsushige Ono²

Received: 29 September 2020 / Accepted: 13 November 2020 / Published online: 3 January 2021 © Springer Japan KK, part of Springer Nature 2021

Abstract

SCN5A gene encodes the voltage-gated sodium channel Na_V1.5 which is composed of a pore-forming α subunit of the channel. Asparagine (N)-linked glycosylation is one of the common post-translational modifications in proteins. The aim of this study was to investigate impact of N-linked glycosylation disruption on the Na⁺ channel, and the mechanism by which glycosylation regulates the current density and gating properties of the Na⁺ channel. The Na_V1.5-Na⁺ channel isoform (α submit) derived from human was stably expressed in human embryonic kidney (HEK)-293 cells (Nav1.5-HEK cell). We applied the whole-cell patch-clamp technique to study the impact of N-linked glycosylation disruption in Nav1.5-HEK cell. Inhibition of the N-glycosylation with tunicamycin caused a significant increase of Na_V1.5 channel current (I_{Na}) when applied for 24 h. Tunicamycin shifted the steady-state inactivation curve to the hyperpolarization direction, whereas the activation curve was unaffected. Recovery from inactivation was prolonged, while the fast phase (τ_{fast}) and the slow phase (τ_{slow}) of the current decay was unaffected by tunicamycin. *I*_{Na} was unaffected by tunicamycin in the present of a proteasome inhibitor MG132 [N-[(phenylmethoxy)carbonyl]-L-leucy-N-[(1S)-1-formyl-3-methylbutyl]-L-leucinamide], while it was significantly increased by tunicamycin in the presence of a lysosome inhibitor butyl methacrylate (BMA). These findings suggest that N-glycosylation disruption rescues the Na_V1.5 channel possibly through the alteration of ubiquitin–proteasome activity, and changes gating properties of the Na_V1.5 channel by modulating glycan milieu of the channel protein.

Keywords Glycosylation · Nav1.5 channel · Tunicamycin · MG132 · Ubiquitin-proteasome pathway

Abbreviations

N-linked	Asparagine-linked
HEK cells	Human embryonic kidney
MG132	N-[(phenylmethoxy)carbonyl]-L- leucy-N-
	[(1S)-1-formyl-3-methylbutyl]- L-leucinamide
BMA	Butyl methacrylate
DMEM	Dulbecco's modified Eagle's medium
I _{Na}	Voltage-gated sodium channel current
LQT3	Long QT syndrome type 3

Pu Wang, Xiufang Zhu and Mengyan Wei contributed equally to this work.

Katsushige Ono ono@oita-u.ac.jp

- ¹ Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province 050031, People's Republic of China
- ² Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita 879-5593, Japan

TEA-Cl	Tetraethylammonium chloride
TEA-OH	Tetraethylammonium hydroxide
HEPES	4-(2-Hydroxyethyl)-1-piperazineethanesul-
	fonic acid
G	Conductance
I-V curve	Current-voltage curve
ER	Endoplasmic reticulum
FOXO1	Forkhead box protein O1

Introduction

In cardiovascular system many ion channels regulate transmembrane currents that make much contribution to excitation in cardiomyocytes [1–7]. Among them the voltage-gated Na⁺ channel current (I_{Na}) plays a critical and significant role for the fast upstroke of the action potentials and is essential for proper conduction of the electrical impulse. Voltagegated sodium channels are composed of a pore-forming α subunit and auxiliary β subunits. SCN5A gene encodes