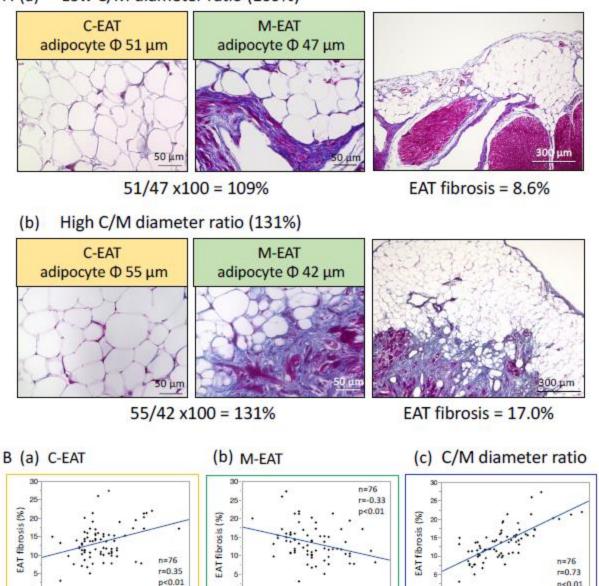
LAA sample

- 心臓血管外科手術で摘出された 心房細動患者の左心耳検体 (n=76)を使用した(左写真)。
- 左心耳検体は、染色標本、電子 顕微鏡標本、タンパク・遺伝子 解析用に保存した。

Table 1 Patient characteristics

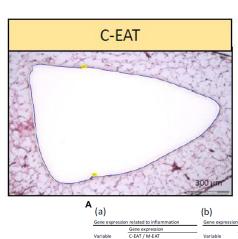
	All patients $(n = 76)$	Paroxysmal AF $(n = 28)$	Persistent AF $(n = 48)$	P value
Age (years)	71.9 ± 8.2	69.9 ± 10.2	73.2 ± 6.7	.09
Sex				
Male	40 (53)	12 (43)	28 (58)	.19
Female	36 (47)	16 (57)	20 (42)	.19
BMI (kg/m ²)	23.2 ± 3.6	22.6 ± 2.7	23.6 ± 4.0	.24
History of present and past illness				
Hypertension	39 (51)	14 (50)	25 (52)	.86
Diabetes mellitus	18 (24)	4 (14)	14 (29)	.14
Dyslipidemia	30 (39)	12 (43)	18 (38)	.64
Coronary artery disease	17 (22)	7 (25)	10 (21)	.67
Cerebral infarction	14 (18)	6 (21)	8 (17)	.61
Sleep apnea	1 (1)	0 (0)	1 (1)	.44
Smoking	28 (37)	11 (39)	17 (35)	.74
Alcohol use	22 (29)	4 (14)	18 (38)	<.05
CHADS ₂ score	2.6 ± 1.1	2.5 ± 1.1	2.6 ± 1.1	.50
CHA ₂ DS ₂ -VASc score	4.0 ± 1.4	4.0 ± 1.3	4.1 ± 1.5	.85
Surgical procedure				
Valve replacement/repair	51 (67)	21 (75)	30 (63)	.26
Aorta replacement	6 (8)	0 (0)	6 (13)	.05
CABG	1 (1)	0 (0)	1 (2)	.44
Combined (CABG and valve)	14 (18)	7 (25)	7 (15)	.26
Combined (aorta and valve)	3 (4)	0 (0)	3 (6)	.17
Combined (ASD closure and valve)	1 (1)	0 (0)	1 (2)	.44
BUN (mg/dL)	25 ± 13	23 ± 14	25 ± 12	.39
Cr (mg/dL)	1.4 ± 1.8	1.8 ± 2.8	1.2 ± 0.6	.13
BNP (pg/mL)	358 ± 435	430 ± 500	311 ± 388	.31
eGFR (mL/min/1.73 m ²)	51 ± 20	53 ± 22	50 ± 19	.45
LAD (mm)	52 ± 10	47 ± 8	54 ± 11	<.01
LVDd (mm)	53 ± 9	52 ± 9	53 ± 9	.45
EF (%)	59 ± 12	62 ± 13	58 ± 13	.13
E/e'	22 ± 13	25 ± 13	20 ± 12	.11
AR II°-III°	19 (25)	5 (18)	14 (29)	.27
AS moderate-severe	18 (24)	8 (29)	10 (21)	.44
MR II°-III°	47 (62)	17 (61)	30 (63)	.88
MS moderate-severe	11 (14)	6 (21)	5 (10)	.19
EAT volume (mL)	89 ± 46	71 ± 28	99 ± 51	<.05
EAT volume corrected by BMI	3.8 ± 1.6	3.1 ± 1.1	4.1 ± 1.8	<.01

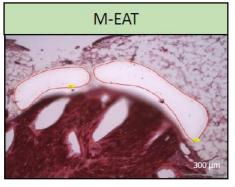

● 発作性心房細動を有する28名と持続性心房細動を有する48 名の間で比較検討を行った

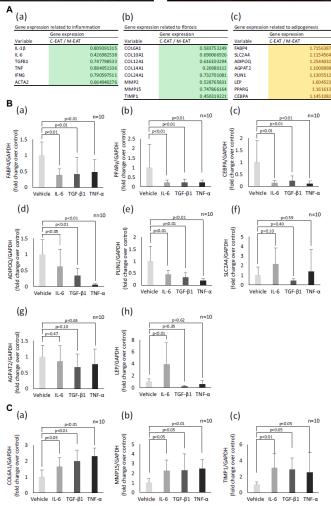
C/M diameter ratio (%)

A (a) Low C/M diameter ratio (109%)

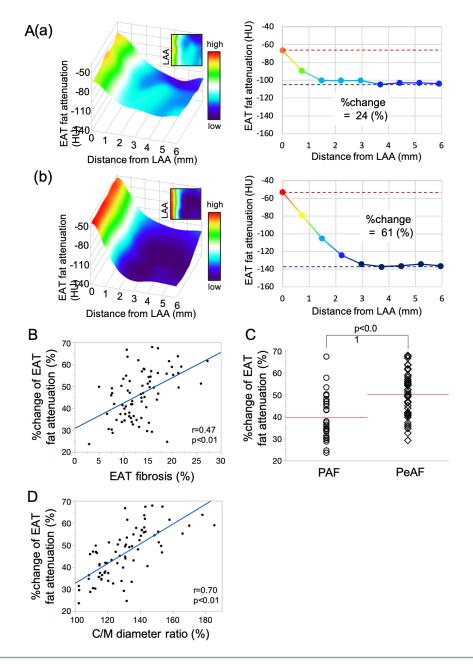
60


adipocyte diameter in C-EAT (µm)




● 線維化の強い心外膜脂肪では、C-EATで脂肪細胞が肥大化し、M-EATでは小型化していた(図A)。

adipocyte diameter in M-EAT (µm)


- そこで、C-EATとM-EATの細胞径の差を示す指標として、 細胞径比(C/M diameter ratio)を定義したところ、C/M diameter ratioは心外膜脂肪および心房筋の線維化量と正の 相関を示した(図B)。
- この結果から、心房筋近位と遠位の脂肪細胞の大きさの差は線維化のマーカーであることが判明した。

- C-EAT t o M-EATをマイクロダイセクションによって切り出し、マイクロアレイ解析を行った。
- 炎症に関わる遺伝として, IL-1β, IL-6, TGF-βが, 線維化に関わる遺伝子である, COL6A1, 脂肪分化に関わる遺伝子であるFABP4などの発現が, C-EATとM-EATで異なっていた。

- CT値の変化をヒートマップおよび折れ線グラフで表すと、 線維化の少ない心外膜脂肪ではその変化は乏しかった(図 A(a))。一方、線維化の多い心外膜脂肪では、CT値の変化 は顕著だった(図A(b))。
- CT値の変化の程度は、心外膜脂肪の線維化と正の相関を示し(図B)、線維化基質の多い持続性心房細動患者でより 大きくなっていた(図C)。
- また、CT値の変化は組織標本で評価した脂肪細胞径比と強い相関を認めた(図D)。
- 今回の結果は、CT値の変化を測定することで心外膜脂肪・ 心房筋の線維化を評価できる可能性を示唆した。