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Chemokine signaling regulates sensory cell migration in zebrafish
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Abstract

Chemokines play an important role in the migration of a variety of cells during development. Recent investigations have begun to elucidate

the importance of chemokine signaling within the developing nervous system. To better appreciate the neural function of chemokines in vivo,

the role of signaling by SDF-1 through its CXCR4 receptor was analyzed in zebrafish. The SDF-1–CXCR4 expression pattern suggested that

SDF-1–CXCR4 signaling was important for guiding migration by sensory cells known as the migrating primordium of the posterior lateral line.

Ubiquitous induction of the ligand in transgenic embryos, antisense knockdown of the ligand or receptor, and a genetic receptor mutation all

disrupted migration by the primordium. Furthermore, in embryos in which endogenous SDF-1 was knocked down, the primordium migrated

towards exogenous sources of SDF-1. These data demonstrate that SDF-1 signaling mediated via CXCR4 functions as a chemoattractant for the

migrating primordium and that chemokine signaling is both necessary and sufficient for directing primordium migration.

D 2004 Elsevier Inc. All rights reserved.
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Introduction

Chemokines are a large family of molecules with impor-

tant roles in both developmental and inflammatory processes

(Rossi and Zlotnik, 2000). Stromal cell-derived factor-1

(SDF-1) and its CXCR4 receptor regulate movement by a

variety of cell types including chemoattraction of leukocytes

and migration of cerebellar, hippocampal, and neocortical

interneurons (Lu et al., 2002; Stumm et al., 2003; Zhu et al.,

2002). In zebrafish, there are two genes encoding SDF-1

ligands and two encoding CXCR4 receptors (Chong et al.,

2001; Doitsidou et al., 2002). SDF-1a–CXCR4b signaling

serves to guide primordial germ cells by chemoattraction

(Doitsidou et al., 2002; Knaut et al., 2003) and regulates the

differentiation of retinal ganglion cells (RGCs) including

guiding their axons within the retina (unpublished data) of

zebrafish embryos. SDF-1a–CXCR4b signaling is also crit-

ical for the development of a mechanosensory structure called
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the posterior lateral line in zebrafish (David et al., 2002). The

lateral line sensory system is composed of neuromast sensory

organs that are distributed over the surface of amphibians and

fishes (Metcalfe, 1989; Stone, 1933). The neuromasts of the

posterior lateral line are distributed along the trunk and tail of

the embryonic zebrafish from the otocyst to the tip of the tail

at the level of the horizontal myoseptum that separates the

dorsal and ventral axial muscles (Gompel et al., 2001;

Metcalfe, 1989). The posterior lateral line develops from a

primordium of precursor cells, which migrates posteriorly

along the horizontal myoseptum from its original position

just posterior to the otocyst. As the primordium migrates,

groups of cells are left behind periodically, which develop

into sensory neuromasts. Migration of the primordium is

dependent on SDF-1a–CXCR4b signaling (David et al.,

2002). sdf-1a is expressed by the horizontal myoseptum,

while cxcr4b is expressed by the primordium. Antisense

knockdown of either the ligand or the receptor and mutations

that affect the development of the horizontal myoseptum and

eliminate expression of sdf-1a disrupt migration by the

primordium. In this paper, we confirm the expression pattern

of SDF-1a–CXCR4b and the disruption of primordium

migration following antisense knockdowns of SDF-1a–

CXCR4b signaling in zebrafish. Furthermore, we extend

these findings by describing the expression pattern of sdf-
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1b, demonstrating that migration by the primordium is

aberrant in odysseus (ody) embryos in which the cxcr4b gene

is mutated (Knaut et al., 2003), showing that migration by the

primordium is altered in transgenic embryos following ubiq-

uitous induction of SDF-1b and showing directly that

SDF-1a–CXCR4b signaling mediates chemoattraction of

the primordium in vivo.
Materials and methods

Fish breeding and maintenance

Zebrafish were reared and maintained as described in

Westfield (1995). Embryos were collected after natural

spawns, kept at 28.5jC, and staged according to hour

postfertilization (hpf). In some cases, embryos were trans-

ferred to water containing 0.2 mM of phenylthiourea at

around 20 hpf to prevent pigmentation.

Generation of expression constructs and transgenic

zebrafish

Construct pHsp70/4-sdf-1b was made by inserting the

full-length sdf-1b cDNA (2.9 kb) into the pHsp70/4-Egfp

vector (Halloran et al., 2000) between the KpnI and NotI

sites to replace the EGFP coding sequence. To create

construct pHsp70/4:sdf1bEgfp, the sdf-1b 5VUTR and cod-

ing region were amplified by PCR with primers: 5V-TGG-
TCGACAGAACACACACACTCGCTC-3 V and 5 V-
GTCTGTCGACTCTGAGCGTTTCTTCTTTATT-3V. (This

PCR reaction removed the stop codon from sdf-1b coding

sequence.) PCR fragment was cut with SalI and inserted into

the pHsp70/4 Egfp vector at the SalI site. These constructs

were heat-inducible (data not shown).

The method for generation of transgenic lines of

zebrafish (hsp70:sdf-1bgfp and hsp70:sdf-1b5Vutr) in which

the transgene was heat-inducible was described by Xiao

et al. (2003). Embryos were heat-induced by placing them

in water at 37jC for 1 h as previously described

(Halloran et al., 2000).

In situ hybridization and immunocytochemistry

Digoxigenin-labeled UTP (DIG-UTP) labeled sense

and antisense RNA probes for sdf-1a, sdf-1b, and cxcr4b

were generated by in vitro transcription from their

cDNAs. The probes were hydrolyzed to 200 bases in

100 mM Na2CO3/NaHCO3 pH 10.2. In situ hybridization

to whole-mount embryos was carried out as previously

described (Schulte-Merker et al., 1992).

The whole mount antibody labeling was performed as

described previously (Westfield, 1995). The following anti-

bodies and concentration were used for immunocytochemis-

try: anti-GFP (Chemokine), 1:25,000; anti-SV2 (Develop-

mental Studies Hybridoma Bank, University of Iowa), 1:100;
antiacetylated-a-tubulin (Sigma), 1:1000; MAb 4D9 (Devel-

opmental Studies Hybridoma Bank), 1:10; MAb Zn-5 (Uni-

versity of Oregon), 1:500.

Morpholino knockdown experiments

Morpholino oligonucleotides (MO; Gene Tools, LLC)

were dissolved at 250 nM concentration in 1� Danieau

solution (58 mM NaCl, 0.7 mM KCl, 0.4 mM MgSO4, 0.6

mM Ca(NO3)2, 5 mM HEPES, pH 7.6) and injected into

one- to four-cell stage embryos. The following antisense

morpholinos were used to inhibit the translation of sdf-1a or

cxcr4b mRNA. Numbers in parenthesis correspond to where

on the target mRNA each morpholino was designed to bind;

the CAT sequence in bold corresponds to the start ATG.

Anti-sdf-1a MO: 5V-ACTTTGAGATCCATGTTTG-

GCAGTG-3V (�10 to +14) Anti-cxcr4b MO: 5V-AAAT-
GATGCTATCGTAAAATTCCAT-3V (+1 to +25).

Standard control morpholino or a control MO for cxcr4b

in which four bases were randomly changed (5V-AAtT-
TGAaGCTATCGTAAtATTgCAT-3V was injected at the

same concentration). About 3–4 ng of morpholino was

injected into each embryo.

The knockdown efficiency of the morpholinos was dem-

onstrated by morpholino injection at 1- to 4-cell stage

followed by injection of plasmid DNA of either pHsp70/4-

sdf-1a-Egfp, pHsp70/4-cxcr4b-Egfp or pHsp70/4-Egfp at 8-

to 32-cell stage. Injected embryos were heat-induced at 37jC
for 1 h around 24 hpf and assayed for mosaic expression of

SDF-1aGFP or CXCR4bGFP on a fluorescence microscope.

Both the antisense cxcr4b and sdf-1aMO but not the control

MOs efficiently knocked down translation of the expression

constructs (data not shown).

Ectopic expression of SDF-1bGFP in mosaic embryos

To ectopically express SDF-1bGFP fusion protein and at

the same time knock down the endogenous SDF-1a protein,

antisense sdf-1a MO was injected into embryos at the one-

cell stage followed by the injection of the expression

construct pHsp70/4-sdf-1b-egfp or the control construct

pHsp70/4-egfp into single blastomere of 4- to 32-cell stage

embryos. Embryos were kept at 28.5jC, heat-induced at 20

and 32 hpf for 1 h each, and fixed at 36 hpf. The migrating

primordium was assayed by in situ hybridization with a

cxcr4b riboprobe and the axons of the posterior lateral line

ganglion with antiacetylated-a-tubulin.
Results

Expression of SDF-1a and CXCR4b correlate with

migration by the primordium of the posterior lateral line

As mentioned above, there are two sdf-1 genes, sdf-1a

and sdf-1b, in zebrafish (Doitsidou et al., 2002; Li et al.,



Fig. 1. Expression pattern of sdf-1b mRNA. A, C, F, and G are side views with anterior to the left and dorsal up. B, D, E, H, and I are dorsal views with anterior

to the left. (A–D) During early somitogenesis, sdf-1b is expressed by the paraxial mesoderm (closed arrows) including the somites at 12 hpf and the adaxial

cells (open arrow). (E) By 24 hpf, sdf-1b is expressed within the CNS at the midbrain or hindbrain boundary (closed arrow) as well as by the pharyngeal arches

(open arrow). (F) sdf-1b is also expressed by the tail bud at 24 hpf. (G) By 36 hpf, expression within the CNS includes the floor plate in the midbrain and

hindbrain (closed arrowheads), a group of midline cells anterior to the forebrain/hindbrain boundary (open arrow) and the optic stalk (open arrowhead) in

addition to weaker expression at the midbrain/hindbrain boundary (closed arrow). Outside of the CNS, sdf-1b is expressed by presumptive head cartilage (c),

the pharyngeal arches (a), dorsal aorta (d), and pronephros (p). (H) At 48 hpf, high expression is evident in the midbrain or hindbrain floor plate (closed

arrows), the midline forebrain cells (open arrow), and the optic stalk (arrowheads) as well as the presumptive head cartilage (c) which is out of the plane of

focus. (I) At 64 hpf, the optic stalk (closed arrow) maintains a low level of sdf-1b expression, whereas the ventral arch structures (open arrows) express sdf-1b at

a very high level. Expression by the floor plate (arrowheads) can still be seen out of the focal plane. Bar scale, 50 Am.
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Fig. 2. Expression patterns of sdf-1a and cxcr4b correlate with the migration path of the posterior lateral line primordium. All panels are lateral views of the

trunk of embryos probed with sdf-1a, sdf-1b, or cxcr4b riboprobes with anterior to the left and dorsal up. (A) cxcr4b is expressed by the posterior lateral line

primordium (brackets) in a 20- to 21-hpf embryo. The leading margin of the primordium is at somite 1. Oto, denotes the otocyst. The approximate location of

the ganglion of the posterior lateral line, which does not express cxcr4b, is marked by an open arrow. Rohon-Beard neurons within the spinal cord can also be

seen to express cxcr4b dorsal to the primordium. (B) sdf-1a is expressed by groups of cells at the horizontal myoseptum (arrows) in the anterior myotomes in a

20- to 21-hpf embryo. Bracket denotes the location of the unlabeled primordium. (C) cxcr4b is expressed by the migrating primordium (brackets) at a midtrunk

level in a 28-hpf embryo. The posterior lateral line axons (arrow) labeled with antiacetylated-a-tubulin extends in association with the primordium. (D and F)

sdf-1a is expressed by the entire length of the horizontal myoseptum by 28 hpf. Shown are the sdf-1a-positive horizontal myoseptal cells in a side view (D) and

cross section (F, open arrowheads) at midtrunk levels. (E and G) sdf-1b is expressed by the presumptive dorsal aorta (brackets in E and G) and pronephros

(closed arrows in E and G) and the intersegmental vessels (open arrow in G) by 28 hpf. Shown are lateral view (E) and cross section (G) at the midtrunk levels

of the embryo. Bar scale, 50 Am.
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unpublished results). sdf-1b is expressed as early as 12 hpf

in the anterior half of the embryo and by the lateral plate

mesoderm at the margins of the embryo, anteriormost

somites, and adaxial cells adjacent to the notochord in the

posterior half of the embryo (Fig. 1). By 16 hpf, expression

is evident in the pharyngeal arches and continues in the

posterior lateral mesoderm and adaxial cells but is no

longer seen in the somites. Expression within the CNS

begins around 24 hpf and can be seen at the midbrain/

hindbrain boundary. Additionally, sdf-1b is expressed in the

tail bud at this stage. Several hours later, sdf-1b is begin-

ning to be expressed by the midbrain and hindbrain floor

plate (not shown) with strong expression evident by 36 hpf.

Also at 36 hpf, one can observe strong expression in a

group of midline cells in the forebrain just anterior to the

midbrain floor plate. Furthermore, expression is evident

outside the CNS in what appears to be head cartilage,

dorsal aorta, and pronephros. Also evident is sdf-1b ex-

pression within the optic stalk.
Fig. 3. Ubiquitous misexpression of sdf-1b induces the posterior lateral line primo

lateral line nerve labeled with antiacetylated-a-tubulin is normal in a 48-hpf wild-ty

of the nerve. (B–D) The lateral line nerve is stalled (B) or branches and follows ab

at 20 hpf (C and D) and in 44-hpf hsp70:sdf-1bgfp embryos following heat inducti

area. Arrow in the inset marks a dorsal branch of the lateral line nerve. (G) Mig

extension of the associated posterior lateral line axons (red fluorescence, labeled

(dashed line) in a non-heat-induced 32-hpf hsp70:sdf-1bgfp embryo. Oto denotes the

ventral to the horizontal myoseptum (dashed line) in a 32-hpf hsp70:sdf-1bgfp

primordium, labeled with a cxcr4b riboprobe, has an enlongated oval shape alo

misexpression of sdf-1b, the migrating primordia frequently takes on an irregular
Early on during development, sdf-1a is expressed to direct

the migration of primordial germ cells (Doitsidou et al., 2002;

Knaut et al., 2003). Later, sdf-1a is expressed by cells of the

horizontal myoseptum where it acts to guide the migration of

the posterior lateral line primordium which expresses the

cxcr4b receptor (Fig. 2; David et al., 2002). In fact, sdf-1a is

expressed by the anteriormost horizontal myoseptal cells and

cxcr4b by the primordium as early as 20–21 hpf (Figs. 2A

and B), which is about the onset of the migration by the

primordium. Later on when the primordium is actively

migrating, it expresses cxcr4b, and the entire length of the

horizontal myoseptum expresses sdf-1a, while the dorsal

aorta and pronephros but not the horizontal myoseptum

express sdf-1b (Figs. 2C and E). Furthermore, when assayed

with in situ hybridization, the ganglion of the posterior lateral

line does not express cxcr4b (Fig. 2A) nor cxcr4a (not

shown), which is highly and equally homologous to cxcr4

in mammals as cxcr4b (Chong et al., 2001). Thus, sdf-1a and

cxcr4b are expressed by the horizontal myoseptum and
rdium and associated nerve to stall and follow aberrant pathways. (A) The

pe embryo following heat induction at 24 hpf. Arrow denotes the distal end

errant pathways in 48-hpf hsp70:sdf-1bgfp embryos following heat induction

on at 20 and 33 hpf (E and F). Inset in C is a magnified view of the boxed

ration by the primordium (bracket), labeled with a cxcr4b riboprobe, and

with antiacetylated-a-tubulin) is normal along the horizontal myoseptum

otocyst. (H) The primordium (bracket) and lateral line axons are stalled and

embryo following heat induction at 20 hpf. (I) The posterior lateral line

ng the myoseptum in a 32-hpf control embryo. (J) Following ubiquitous

shape. Bar scale, 50 Am.
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primordium, respectively, while no cxcr4 receptor appears to

be expressed by the posterior lateral line neurons before or

during migration by the primordium and extension of the
lateral line axons. This expression pattern suggests that SDF-

1–CXCR4 signaling directly regulates migration by the

primordium but not the extension of the lateral line axons.



Fig. 4. The posterior lateral line primordium and nerve are stalled or misrouted when SDF-1a is knocked down by prior injection of antisense sdf-1a MO. (A)

The lateral line nerve labeled with anti-SV2 is normal in 48-hpf control embryos injected with control MO. Open arrow denotes the distal tip of the nerve. The

motor axons are also labeled by anti-SV2. (B) The lateral line nerve followed an aberrant pathway in a 48-hpf SDF-1a morphant embryo. Arrow denotes site at

which the nerve strays from the horizontal myoseptum. (C) Magnified view of the boxed area in panel B showing that the nerve aberrantly extended ventrally.

Arrows denote the ends of the lateral line nerve that appears to have branched. The unlabeled primordium is designated by brackets. (D) Schematic plot

showing the locations of the distal ends of the lateral line nerve in SDF-1a morphant (o) and control MO (D) embryos at 48 hpf. (E) The primordium

(brackets) labeled with a cxcr4b riboprobe is found in an aberrant location ventral to the horizontal myoseptum (dashed line) in a 32-hpf SDF-1a morphant

embryo. (F) The posterior lateral line nerve labeled with antiacetylated-a-tubulin has followed an aberrant ventral pathway and remained associated with the

misdirected primordium shown in panel E. The location of the primordium is bracketed. In the embryo shown in panels E and F, both the primordium was

labeled for cxcr4b mRNA and the lateral line nerve labeled with antiacetylated-a-tubulin. (G) Schematic plot showing the locations of the primordium in SDF-

1a morphant (o) and control MO (D) embryos at 32 hpf. Bar scale, 50 Am.
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Table 1

Posterior lateral line primordia or nerves were stalled or misrouted in 44 or

48 hpf embryos when SDF-1–CXCR4 signaling was perturbed

n Average Number of misrouted

segmenta
Dorsal Ventral Both dorsal

and ventral

Control 50b + 50c 32 0 0 0

SDF-1b

overexpressed

onced

30 8.8 2 9 0

SDF-1b

overexpressed

twicee

36 3.4 2 12 9

Control MOs 36f + 40g 32 0 0 0

SDF-1a MO 74 15.5 1 20 0

CXCR4b MO 70 20.2 5 5 0

a The segment the posterior lateral line primordium or nerve reached at 44

or 48hpf.
b Non-heat-induced hsp:sdf-1bgfp embryos.
c Heat-induced wild-type embryos.
d The hsp-sdf-1bgfp embryos heat-induced once at 20 or 24 hpf.
e The hsp-sdf-1bgfp embryos heat-induced twice at 20 and 33 hpf. In all 23

cases of misrouting, the posterior lateral line nerve branched. Indicated are

cases with only dorsal branches, only ventral branches, or both dorsal and

ventral branches.
f Injected with standard control morpholino.
g Injected with a cxcr4b control morpholino in which four bases were

randomly changed.
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Misexpression of SDF-1b causes the primordium to stall

and follow aberrant pathways

To examine the gain-of-function phenotype of SDF-1–

CXCR4 signaling on migration by the primordium, sdf-1b

was ubiquitously induced in transgenic zebrafish in which

the heat-inducible zebrafish hsp70 promoter regulated sdf-

1b (Halloran et al., 2000; Xiao et al., 2003). Since the

amino acid sequence of SDF-1a and SDF-1b are 91%

similar and 82% identical to each other (unpublished

data), we reasoned that SDF-1b may be similar to SDF-

1a biochemically. Thus, misexpression of sdf-1b may

mimic misexpression of sdf-1a. Lines in which SDF-1b

was tagged with GFP or untagged were used and gave

similar phenotypes. Transgenic embryos were heat-in-

duced at 20 or 24 hpf and assayed with antiacetylated-

a-tubulin to label the axons of the ganglion of the

posterior lateral line (n = 30) at 48 hpf and/or in situ

hybridization for cxcr4b to label the primordium (n = 24)

at 32 hpf. In hsp70:sdf-1bgfp and hsp70:sdf-1b5Vutr embry-

os, ubiquitous expression of the transgene, tested by GFP

fluorescence and sdf-1b in situ hybridization, respectively,

was evident 1 h following heat induction (not shown).

The lateral line axons normally extend embedded and in

tandem with the primordium (Gompel et al., 2001).

Following heat induction of sdf-1b, 100% of the embryos

exhibited lateral line axons or primordia that were either

stalled along the horizontal myoseptum or strayed from

the horizontal myoseptum in the trunk (Figs. 3A–D; Table

1). Often, the primordia were misshapen with the mass of

primordium cells appearing less cohesive (Figs. 3I and J).

In cases in which the lateral line axons and the primordia

were assayed simultaneously, they were seen to be in

tandem in every case. Furthermore, when transgenic

embryos were heat-induced at 20 and 33 hpf and then

assayed at 44 hpf (n = 36), the lateral line nerve and

primordia exhibited a higher level of stalling and misrout-

ing (Figs. 3E–G; Table 1). The nerves or primordia

stalled at segment 3.4 on average and misrouted in 23

of 36 cases in transgenic embryos heat-induced twice

compared with stalled at segment 8.8 and misrouted in

11 of 30 cases in embryos heat-induced once. In heat-

induced wild-type embryos (n = 50) and uninduced

transgenic embryos (n = 50), the primordium or lateral

line axons were normal in every case. Thus, ubiquitous

induction of an sdf-1 induced errors in migration by the

primordium and extension of the associated lateral line

growth cones in an apparent dose-dependent way.

Antisense knockdown of SDF-1a or CXCR4b causes the

migrating primordium to stall and follow aberrant pathways

To see if SDF-1a–CXCR4b signaling is required for

normal migration by the primordium, we injected antisense

MOs against sdf-1a or cxcr4b into recently fertilized

embryos that we had previously demonstrated were effec-

Q. Li et al. / Development
tive and specific for knocking down expression of the

encoded proteins (unpublished data). Following injection

of either sdf-1a or cxcr4b antisense MOs (n = 74 and n =

70, respectively), the primordium and associated posterior

lateral line axons were stalled and/or strayed from the

horizontal myoseptum (Figs. 4 and 5, Table 1). Injections

of standard or cxcr4b control MOs (n = 36 and 40,

respectively) or sdf-1b antisense MOs (n = 38) did not

disrupt migration by the primordium or extension by the

lateral line axons. Thus, SDF-1a–CXCR4b signaling is

necessary for normal migration by the primordium and

axon extension by the ganglion of the posterior lateral line

and suggests that it mediates an attractive interaction to

keep the primordium or lateral line axons on the horizontal

myoseptum.

Interestingly, in sdf-1a morphants in which the primor-

dium or the posterior lateral line nerve strayed from the

horizontal myoseptum, the primordium or lateral line

nerve did so in a ventral direction in nearly all cases

(95%) (Table 1). On the other hand, in cxcr4b morphants,

the primordium or lateral line nerve strayed equally in the

dorsal versus ventral direction (Table 1). One explanation

for the directionality bias seen following knockdown of

the ligand but not following knockdown of the receptor is

that a source of a second chemoattractive ligand may

exist ventral to the horizontal myoseptum. In fact, sdf-1b

is expressed by a longitudinal band of cells likely to be

the dorsal aorta and pronephros which are located ventral

to the horizontal myoseptum (Fig. 2E). Since SDF-1b and
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SDF-1a are highly homologous to each other and ubiq-

uitous misexpression of SDF-1b results in aberrant mi-

gration of the primordium or lateral line nerve, it is
Fig. 5. The posterior lateral line primordium and nerve are stalled or misrouted w

with anti-SV2 is normal in a 48-hpf embryo previously injected with control cxcr

nerve is stalled in a 48-hpf CXCR4b morphant embryo. (C) The lateral line ne

embryo. (D) The lateral line nerve aberrantly branched with one branch extend

showing the locations of the distal ends of the lateral line nerve in CXCR4b morph

with a cxcr4b riboprobe is located in an aberrant position ventral to the horizontal

primordium is located in an aberrant dorsal position in a 32-hpf CXCR4b morpha

CXCR4b morphant (o) and control MO (D) embryos at 32 hpf. Bar scale, 50 A
possible that in the absence of SDF-1a, the primordium

or lateral line axons move ventrally towards the source of

SDF-1b.
hen CXCR4b is knocked down. (A) The posterior lateral line nerve labeled

4b MO. Distal tip of the nerve is denoted by the arrow. (B) The lateral line

rve aberrantly extended dorsally (arrows) in a 48-hpf CXCR4b morphant

ing ventrally in a 48-hpf CXCR4b morphant embryo. (E) Schematic plot

ant (o) and control MO (D) embryos at 48 hpf. (F) The primordium labeled

myoseptum (dashed line) in a 32-hpf CXCR4b morphant embryo. (G) The

nt embryo. (H) Schematic plot showing the locations of the primordium in

m.
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Migration by the primordium is aberrant in cxcr4b mutant

embryos

Since ody is a mutation in the cxcr4b gene and one likely

to be a loss-of-function mutation (Knaut et al., 2003), we

examined migration by the primordium and extension by the

lateral line axons in these mutants. As expected, primordium

migration and lateral line axon extension were disrupted. The

primordium and lateral line axons migrated or extended at

most to segment 2 in 36-hpf ody embryos (n = 8) and

segment 8 in 48-hpf ody embryos (n = 12) compared with

segment 16 or greater for 36-hpf control embryos and

segment 30 or greater for 48-hpf control embryos, respec-

tively (Fig. 6). Comparison of 48-hpf embryos shows that the

primordium or lateral line axons were more retarded in ody

embryos compared with sdf-1a and cxcr4b morphants (Figs.

4–6), perhaps due to incomplete elimination of SDF1a–

CXCR4b signaling in the morphants compared with ody

mutants. However, the primordium and lateral line growth
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Fig. 6. The posterior lateral line primordium and axons are stalled in the cxcr4b

riboprobe is located normally in somite 16 in a 32-hpf wild-type embryo. (B and C

32-hpf ody embryos. (D) The lateral line nerve labeled with antiacetylated-a-tubuli

marked by the arrow. In wild-type embryos, the lateral nerve reaches the posterio

primordium in ody (o) and wild-type (D) embryos at 32 hpf. (F) Schematic plot s

wild-type (D) embryos at 48 hpf. Bar scale, 50 Am.
cones did not misroute in ody embryos, while in some sdf-1a

and cxcr4b morphants, they did misroute as well. Overall,

however, it is clear that migration or extension by the

primordium or lateral line axons is aberrant in ody embryos

and thus confirms that SDF-1a–CXCR4b signaling is re-

quired for normal migration by the primordium and exten-

sion of lateral line axons.

Erroneous primordium migration and lateral line axon

extension following disruption of SDF-1a–CXCR4b signal-

ing are likely a direct one rather than secondary to changes in

the trunk and tail. In sdf-1a morphant, cxcr4b morphant, and

ody embryos, the morphology of the trunk and tail and their

major organs, the axial muscles, horizontal myoseptal re-

gion, and notochord, were normal (not shown). Additionally,

muscle pioneer cells labeled with an engrailed-1 riboprobe,

MAb 4D9 that recognizes the engrailed protein, and MAb

Zn5 that recognizes the DM-GRASP protein were normal in

sdf-1a and cxcr4b morphants (Fig. 7). Furthermore, the

primordium expresses cxcr4b mRNA normally in sdf-1a
mutant odysseus (ody). (A) The primordium (arrow) labeled with a cxcr4b

) The primordium is stalled in somite 3 in panel B and somite 1 in panel C in

n is stalled in somite 8 in a 48-hpf ody embryo. The distal tip of the nerve is

r tip of the tail by 40 hpf. (E) Schematic plot showing the position of the

howing the position of the distal tip of the lateral line nerve in ody (o) and



Fig. 7. Differentiation of the horizontal myoseptum is not affected in sdf-1a or cxcr4b morphants. (A and B) Lateral views of control (A) and sdf-1a morphant

(B) 28-hpf embryos showing that muscle pioneer cells at the myoseptum properly express eng-1. (C and D) Control (C) and cxcr4b morphant (D) 48-hpf

embryos showing that muscle pioneer cells (arrows) express DM-GRASP, as labeled by MAb Zn-5. Bar scale, 50Am.
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and cxcr4b morphants, suggesting that the primordium has

developed normally in the absence of SDF-1a and CXCR4b

(Figs. 4D, 5E and F), and the horizontal myoseptum nor-

mally expresses sdf-1a in ody mutants, suggesting that the

myoseptum is normal despite a lack of SDF-1a activity (not

shown). Thus, SDF-1a–CXCR4b signaling appears to di-

rectly mediate migration by the primordium.

SDF-1 is a chemoattractant for the migrating primordium

Aberrant migration by the primordium and extension of

the lateral line nerve in embryos that ubiquitously misex-

press SDF-1b and in embryos deficient for SDF-1a or

CXCR4b are consistent with a chemoattractive action of

SDF-1 on the CXCR4b-bearing primordium. To directly test

this hypothesis, migration of the primordium was examined

when the primordium encountered sources of exogenous

SDF-1b in wild-type embryos in which endogenous SDF-1a

was knocked down. To do this, sdf-1a antisense MO was

injected at the one-cell stage followed by injection of the

pHsp70-sdf-1b-Egfp expression construct at the 4- to 32-cell

stage, heat induction of sdf-1bgfp at 20 and 32 hpf, and

assayed at 36 hpf (n = 28; Fig. 8A). Control embryos (n =

33) were given the same treatment except that the pHsp70-

Egfp expression construct was injected in place of the
pHsp70-sdf-1b-Egfp construct. We had previously demon-

strated that antisense sdf-1a MO did not affect sdf-1b

translation, and injection of the pHsp70-sdf-1b-Egfp plas-

mid resulted in mosaic expression of SDF-1b due to random

segregation of the expression plasmid in the dividing cells

(data not shown). Under these conditions, the primordium

often encountered muscle cells expressing exogenous sdf-1b

in the absence of SDF-1a. In all the experimental and

control embryos, both the primordia and the lateral line

nerves were assayed.

The primordium and lateral line nerve were associated

with muscles misexpressing SDF-1bGFP much more fre-

quently than with muscles misexpressing GFP (Fig. 8; Table

2). In each case, the primordium and the nerve were in

tandem (Figs. 8F and G). Of the embryos misexpressing

SDF-1bGFP, 13 of 21 (62%) primordia or lateral line nerves

that misrouted were in contact or within 2 Am from a muscle

cell expressing SDF-1bGFP with misrouting occurring dor-

sally (n = 4) as well as ventrally (n = 9). Of the primordia or

lateral line nerves that misrouted but had not encountered an

SDF-1bGFP-misexpressing cell, all (n = 8) misrouted ven-

trally. In comparison, of the embryos misexpressing GFP,

two of nine (22%) primordia or lateral line nerves that

misrouted were in contact or within 2 Am from a muscle cell

expressing GFP. All of the primordia or lateral line nerves



Fig. 8. The primordium and posterior lateral line axons are attracted by ectopic sources of SDF-1b in SDF-1a morphant embryos. (A) Schematic plot illustrating

the experimental procedure. Embryos are injected with antisense sdf-1aMO at the one-cell stage followed by injection of the hsp70:sdf gfp expression construct

into a blastomere at the 4- to 32-cell stage. Subsequently, embryos are heat-induced at 32 hpf and assayed for the primordium with a cxcr4b riboprobe (blue),

lateral line nerve with antiacetylated-a-tubulin (red flourescence), and the SDF-1bGFP-expressing cells with anti-GFP (brown) at 36 hpf. (B) The primordium

(arrow) is located normally along the horizontal myoseptum (dashed line) in somite 18 in a heat-induced control embryo. (C) The primordium (open arrow) is

located in an aberrant dorsal position near several muscle and dermal cells (closed arrow) expressing SDFGFP in somite 4 in an experimental embryo. The

primordium on the other side (arrowhead) which is out of the focal plane is located in an aberrant ventral location near an SDFGFP-expressing muscle fiber

(asterisk). (D) The primordium (open arrow) appears to be wrapping around a SDFGFP-expressing muscle fiber (closed arrow) in somite 4 of an experimental

embryo. (E) The primordium (open arrow) is located in an aberrant ventral position near a SDFGFP-expressing muscle fiber (closed arrow) in somite 3 in an

experimental embryo. (F) The primordium (open arrow) is located in an aberrant ventral position near a SDFGFP-expressing muscle fiber (closed arrow) in

somite 3 of an experimental embryo. (G) The same view from the embryo seen in (F) showing that the posterior lateral line axons (labeled with antiacetylated-

a-tubulin) have extended aberrantly in tandem with the misrouted primordium. The location of the primordium is indicated by the open arrow as in (F). Bar

scale, 50 Am.
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Table 2

Ectopic sources of SDF-1b tandemly chemoattract the migrating primordiaa

of the posterior lateral line and posterior lateral line nervesb in the absence

of SDF-1a

n Average

segment

Number of

misrouted

primordia

Dorsal Ventral

SDF-1a MO + with GFP cellsc 6 13.2 0 2

ectopic GFP without GFP cellsd 27 12.8 0 7

SDF-1a MO + with GFP cells 15 6.7 4 9

ectopic SDF-

1b-GFP

without GFP cells 13 8.9 0 8

a Labeled with cxcr4b riboprobe.
b Labeled with antiacetylated-a-tubulin.
c Embryos in which the primordia are in close association (within 2 Am)

with cells ectopically express GFP or SDF-1bGFP.
d Embryos in which no GFP-positive cells were found near the primordia.
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that misrouted that had encountered or not encountered

GFP-expressing cells did so ventrally. The correlation of

primordia or lateral line nerves with muscles expressing

SDF-1bGFP suggests that SDF-1bGFP was a chemoattractant

for the primordium. Presumably, in cases where the primor-

dium or lateral line nerve did not encounter an SDF-1bGFP-

misexpressing cell, they were attracted by the endogenous

SDF-1b secreted by the ventrally located dorsal aorta and

pronephros in the absence of SDF-1a. These results suggest

that normally SDF-1a derived from the horizontal myosep-

tum serves to guide the primordium via an attractive

interaction.
Discussion

Disruption of SDF-1a–CXCR4b signaling clearly alters

migration by the primordium and the posterior lateral line

axons (David et al., 2002; this paper). Furthermore, the

selective association of the primordium or lateral line axons

and muscle cells misexpressing SDF-1b in embryos in

which SDF-1a is knocked down strongly indicates that

SDF-1 proteins are chemoattractive to the CXCR4-bearing

primordium. This in turn suggests that normally SDF-1a

expressed by the horizontal myoseptal cells acts to keep the

migrating primordium on course via this attractive activity.

The issue of how SDF-1 proteins are actually distributed in

embryos, however, is unclear. SDF-1 is highly charged and

known to bind glycosaminoglycans (Amara et al., 1999;

Sadir et al., 2001) and thus presumably to the extracellular

matrix which should act to limit the diffusion of the ligand

and set up gradients of the ligand within close proximity to

cells that secrete the ligand. When SDF-1a was knocked

down, the primordium or lateral line axons sometimes did

migrate tens of microns towards ventral sources of SDF-1b

or migrate towards cells expressing ectopic SDF-1b, sug-

gesting that SDF-1s can diffuse some distance within

embryos. How endogenous SDF-1 proteins are distributed
within zebrafish embryos, however, is unknown and awaits

the identification of suitable antibodies.

The finding that exogenous SDF-1b can attract the

primordium while endogenous SDF-1a regulates migration

by the primordium suggests the hypothesis that SDF-1a and

SDF-1b have similar activities and can functionally substi-

tute for each other. The high level of homology between the

two SDF-1s is certainly consistent with their putative func-

tional similarity (data not shown). One corollary of their

putative functional similarity is that ubiquitous misexpres-

sion of SDF-1b should be similar to that of SDF-1a. The fact

that ubiquitous misexpression of SDF-1b and loss of func-

tion of SDF-1a have similar effects on migration by the

primordium suggests that overexpression of SDF-1b could

lead to massive desensitization of the CXCR4b receptors on

the primordium cells and thus mimics a loss-of-function

phenotype. In fact, the CXCR4 receptor is well known to

desensitize and become internalized upon activation by

agonists (Haribabu et al., 1997; Orsini et al., 2000). Alter-

natively, ubiquitous misexpression of exogenous SDF-1b

may obscure the pathway demarcated by endogenous ex-

pression of SDF-1a by the horizontal myoseptum. If over-

expression of SDF-1b leads to complete desensitization of

the CXCR4b receptor, then one might expect that misrouting

by the lateral line nerve or primordium should occur equally

in the dorsal and ventral directions as was the case with the

CXCR4b knockdowns. If overexpression leads to masking

of the normal pathway and increased confusion of the

primordium, then one might expect that there might be a

ventral bias when misrouting occurs, since overall, there is

more SDF-1 expression ventral to the horizontal myoseptum

compared with dorsal to it. In fact, we did find that the

proportion of misrouted lateral line nerve or primordia was

higher in the ventral direction compared with dorsal. Wheth-

er this signifies that overexpression leads to masking of the

normal pathway and/or to desensitization of the CXCR4b

receptor is, however, unclear, since it is unknown whether

the overexpression regimes effectively overexpress the li-

gand throughout the entire duration from time of heat

induction to time of assay.

Disruption of SDF-1–CXCR4 signaling always leads to

errors in migration of the primordium and pathfinding by the

lateral line growth cones at the same time. Potentially, SDF-

1–CXCR4 signaling could regulate the primordium and

axons independently. Alternatively, SDF-1–CXCR4 signal-

ing could control migration by the primordium, which in turn

guides the lateral line growth cones or vice versa. Since the

neurons in the posterior ganglion of the lateral line appear not

to express cxcr4a or cxcr4b while the migrating primordium

expresses cxcr4b, SDF-1 is likely acting on the primordium

and not the growth cones. Thus, it appears that pathfinding by

the lateral line growth cones is dependent on the migrating

primordium. One possible mechanism that links the lateral

line growth cones to the primordiummight involve the HNK-

1 glycoepitope (Becker et al., 2001). The lateral line growth

cones express HNK-1, and antibody block of the HNK-1
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epitope leads to errors in outgrowth by the lateral line axons

but not migration by the primordium. Since the primordium

expresses NCAM, it is possible that NCAM–HNK-1 binding

may link the axons to the primordium and thus participate in

the guidance of the axons by the primordium.

Despite a lack of a direct effect on the lateral line growth

cones, SDF-1–CXCR4 signaling can directly regulate other

growth cones. SDF-1–CXCR4 mediates repulsion or attrac-

tion of cerebellar growth cones in vitro (Xiang et al., 2002)

and can interfere with the repulsive activity of Sema 3A,

Sema 3C, and Slit-2 in vitro (Chalasani et al., 2003). In

addition, ubiquitous misexpression of SDF-1b and knock-

down of SDF-1a–CXCR4b signaling also disrupt pathfind-

ing by retinal ganglion axons in zebrafish (data not shown),

and knocking out CXCR4 induces errors by some dorsal

root ganglion axons within the spinal cord in mice (Chala-

sani et al., 2003). Thus, it is likely that SDF-1 regulates

pathfinding by a direct chemoattractant or chemorepellant

activity on growth cones or via interference of repellants in

vivo as well as guide migration by neurons and sensory

cells.

Our results strongly suggest that SDF-1–CXCR4 signal-

ing regulates migration by the lateral line primordium and

that both SDF-1a and SDF-1b can act as a chemoattractant for

the primordium. However, the horizontal myoseptum is not

the only source of SDF-1 in the zebrafish trunk. The pro-

nephros expresses sdf-1a (David et al., 2002) and sdf-1b and

the dorsal aorta expresses sdf-1b. Given this situation, one

wonders whether SDF-1a derived from the horizontal myo-

septum is sufficient to keep the primordium on target. In fact,

in most of the sdf-1a and cxcr4bmorphants and all of the ody

mutants, the primordium stalled but did not go off course.

This suggests that other molecules may act in concert with

SDF-1a to guide the primordium along the horizontal myo-

septum. Two molecules that may also guide the primordium

are Netrin-1a and Sema3A1. Netrin-1a, a putative chemo-

attractive molecule, is expressed by the muscle pioneers and

the adaxial muscles including those at the horizontal myo-

septum (Lauderdale et al., 1998), and Sema3A1, a repulsive

molecule, is expressed by the axial muscles dorsal and ventral

to the horizontal myoseptal region and so could restrict the

primordium to the horizontal myoseptum (Shoji et al., 1998).

Thus, it is possible that several molecular signaling systems

may act in concert to insure correct migration of the lateral

line primordium and associated axons.
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